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Dengue is a complex public health problem that is common in tropical and subtropical regions.

This disease has risen substantially in the last three decades, and the physical symptoms depict
the self-a±ne behavior of the occurrences of reported dengue cases in Bahia, Brazil. This study

uses detrended °uctuation analysis (DFA) to verify the scale behavior in a time series of dengue

cases and to evaluate the long-range correlations that are characterized by the power law �

exponent for di®erent cities in Bahia, Brazil. The scaling exponent (�) presents di®erent long-
range correlations, i.e. uncorrelated, anti-persistent, persistent and di®usive behaviors. The

long-range correlations highlight the complex behavior of the time series of this disease. The

International Journal of Modern Physics C

Vol. 27, No. 12 (2016) 1650143 (9 pages)

#.c World Scienti¯c Publishing Company
DOI: 10.1142/S0129183116501436

1650143-1

In
t. 

J.
 M

od
. P

hy
s.

 C
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 F

U
N

D
A

C
A

O
 O

SW
A

L
D

O
 C

R
U

Z
 o

n 
06

/3
0/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S0129183116501436


¯ndings show that there are two distinct types of scale behavior. In the ¯rst behavior, the time

series presents a persistent � exponent for a one-month period. For large periods, the time series

signal approaches subdi®usive behavior. The hypothesis of the long-range correlations in the
time series of the occurrences of reported dengue cases was validated. The observed self-a±nity

is useful as a forecasting tool for future periods through extrapolation of the � exponent be-

havior. This complex system has a higher predictability in a relatively short time (approxi-

mately one month), and it suggests a new tool in epidemiological control strategies. However,
predictions for large periods using DFA are hidden by the subdi®usive behavior.

Keywords: Detrended °uctuation analysis; epidemic process; subdi®usive behavior.

PACS Nos.: 87.19.xd, 05.45.Df, 05.45.Tp, 02.50.Ev, 89.75.Da

1. Introduction

Dengue fever is considered to be the most important viral disease transmitted by

arthropods1,2; it is also the most common and widespread arbovirus in the world and

is especially highlighted among reemerging diseases. The main arthropod that

transmits dengue is the Aedes aegypti mosquito, which is a species that is originally

from Africa. This mosquito moved to the American continent during the colonization

period.3 The ¯rst related cases of dengue fever occurred in the late eighteenth century

on the island of Java in Asia and in the state of Philadelphia in the United States of

America. Nevertheless, the World Health Organization (WHO) only recognized

dengue fever as a disease in the 20th century.3

In the second half of the 20th century, the occurrence of dengue fever also in-

creased because of the urban vector of the disease resulting from the high propa-

gation of urban and A. aegypti populations. The ¯ght against A. aegypti in domestic

habitats, known as source reduction, is the fundamental method to prevent the

spread of dengue fever by the public health municipality agents of endemic cities.4–7

The dengue fever virus is an international public health problem. Half of the world

population is currently at a potential risk of dengue fever infection, and between 50

million and 100 million new cases of infection have been reported each year. Among

the infected, 500 000 people had a severe infection that required hospitalization; most

patients were children. Approximately 2:5% of those infected died.8 The lack of

e®ective drugs and vaccines makes vector control the sole tool for primary inter-

vention,9 and currently, treatments only exist for the symptomatic e®ects, not the

virus itself. In patients with severe infection, shock and bleeding usually worsen the

clinical case. If a patient is not treated in time, death often results. Both early

detection and correct prognosis can avoid such serious complications.8

In Brazil, the Epidemiological Survey of the Health Surveillance O±ce3 showed

that between January 2012 and April 2012, 286 011 cases of dengue fever were

registered. These data demonstrated a 44% reduction in total cases of dengue fever in

the country. Despite the decrease in disease transmission rate in the majority of

regions, some states did see an increase in the number of incidences in 2012. The state

of Bahia stands out among them, with 200.9 cases per 10 000 inhabitants.
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In 2011, in Bahia, there were 22 424 cases of dengue fever; in 2012, the number

increased to 28 154. Therefore, the incidence of dengue fever in Bahia in 2011 was

160.0 cases per 10 000 inhabitants, and the overall number increased to 200.9 cases

per 10 000 inhabitants in 2012.3

The evolution of dengue fever must to be addressed using multidisciplinary tools

to minimize its propagation during the short term where the disease is present.

The goal of this work is to apply detrended °uctuation analysis (DFA)10 to study

the scale properties of dengue fever incidence to verify its scale behavior. Thus, the

time series of incidence in cities in Bahia, Brazil is evaluated. This work is structured

as follows: the ¯rst section is an introduction to the problem; the second section

introduces the DFA method; the third section presents the results; A description and

interpretation of the proposed model is done in fourth section.

2. Method

Daily time series of dengue fever incidence in 25 municipalities in Bahia, Brazil, are

selected between 2000 and 2010 to analyze their self-a±nity properties using DFA.

One advantage of the DFA method is that it accounts for the long-range power-law

correlations in signals with embedded polynomial trends that can mask the true

correlations in the °uctuations of a noise signal.

The DFA method is proposed for determining the statistical self-a±nity of a

signal; the method is based on the theory of random walks11 and is an improvement

of the °uctuation analysis (FA) method.12 The range of systems apparently displays

the power law, so the self-invariant correlations have increased dramatically in recent

years. It was initially proposed for applications in the sequential analysis of DNA,10

so the DFA method has been applied for time series analysis in many areas, including

the following,13,14: cloud structure analysis15 geology,16 °uctuation analysis of as-

trophysical systems,17,18 phase transitions,19 sunspot examinations,20 heart rate

variability studies,21 ion channel studies,22 protein energy,23 weather,24 the interval

between successive steps to assess a disease so a patient walks25 and ¯nancial time

series.26,27 The DFA method is excellent at avoiding the false detection of correla-

tions that are artifacts of nonstationary time series.

The following steps are used for the DFA method10:

. Consider an original time series, ri, where i ¼ 1; 2 . . . ;N andN is the total number

of daily cases of dengue fever. The time series ri is integrated to obtain

yðkÞ ¼ Pk
i ri � hri, where hri is the average value of ri.

. The integrated signal yðkÞ is divided into boxes of equal length n;

. For each n-size box, yðkÞ is ¯tted using a polynomial function of order l, which

represents the trend in the box. The y coordinate of the ¯tting line in each box is

denoted by ynðkÞ because a polynomial ¯tting of order l is used and the algorithm

DFA-l is denoted;
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. The integrated signal yðkÞ is detrended by subtracting the local trend ynðkÞ within
each box (of length n);

. For a given n-size box, the root-mean-square °uctuation, FðnÞ, for the integrated
and detrended signal is given as

F ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
k¼1

½yðkÞ � ynðkÞ�2
vuut : ð1Þ

The above computation is repeated for a broad range of scales (n-sized box) to

provide a relationship between F ðnÞ and the box size n.

The scaling exponent � is de¯ned whenever such a relationship is characterized by

a power-law FðnÞ / n�. Therefore, the scaling exponent � is a self-a±ne parameter

expressing the long-range power-law correlation properties of the incidence of dengue

fever. Moreover, the scaling exponent � allows for the assessment of how the long-

range correlation in°uences the future behavior.

The � exponent is classi¯ed as follows13,14,28,29:

. If 0 < � < 0:50, the time series has an anti-correlated behavior, indicating an anti-

persistent signal, i.e. when large values (small) occur, in the future, °uctuations

tend to have small values (large);

. If � ¼ 0:50, the time series is uncorrelated, like white noise with no memory;

. If 0:50 < � < 1, the °uctuation in the time series has a correlated behavior, i.e.

large (small) °uctuations tend to keep this behavior in the future, as a persistent

signal;

. If � ¼ 1, the time series shows a noise type 1=f;

. If 1 < � < 1:5, the signal is not stationary, as a subdi®usive process29;

. If � ¼ 1:5, a brown noise is present, which is the integration of white noise or noise

of the 141 Brownian type29;

. If � > 1:5, a superdi®usive process exists.29

The � exponent depicts future scenarios that can be used in the epidemiological

control strategy as a possible statistical support.

3. Results

3.1. DFA application���results and discussion

The daily impact of dengue fever in the municipalities of Bahia collected from

the Brazilian Diseases Noti¯cation System (SINAN) databases were analyzed

(Fig. 1, Ref. 30). Furthermore, the DFA method was applied to study the long-range

correlation of dengue incidence for 25 selected municipalities by the highest popu-

lation index (Table 1). Two distinct behaviors for all municipalities were detected

from the ¯ndings. The ¯rst behavior showed that the time series presents a persistent
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� exponent for a period of one month (0:50 < � < 1:00). Furthermore, for larger

time periods, the time series signal approaches the subdi®usive behavior

(1:00 < � < 1:50). The subdi®usive behavior is observed for periods between one

month and one year.

Table 1 provides the average value of the � exponent; its expected values are

� ¼ 0:69 � 0:14 for periods of less than one month, and � ¼ 1:21 � 0:12 for the

periods from one month to one year. On the other hand, Fig. 1 shows the uncorre-

lated behavior between �Month and �Year.

Figure 2 depicts the behavior of the � exponent of the time series of dengue

incidence for all of the recorded data from Bahia. Figure 2 also shows that Bahia

follows the same pattern described in Table 1 compared to the time series of some

municipalities in Bahia. Besides, the long-range correlation in this time series follows

the observed behavior in the time series of all 417 municipalities of Bahia.

3.2. Data °uctuation behaviors

Seasonal phenomena in the time series are detected by the regularity of events

because events are observed from year to year, e.g. the increase in rainfall and

Table 1. Long-range correlation exponents exponents, � and the

standard deviation, �, for 25 selected municipalities for the month

and the year. From 2000 to 2010 data.

Code Municipality �Month � �year �

1 Salvador 0.98 0.04 1.35 0.03

2 Feira de Santana 0.72 0.05 1.20 0.02

3 Vit�oria da Conquista 0.55 0.02 1.23 0.01
4 Camaçari 0.50 0.02 1.34 0.02

5 Itabuna 0.76 0.06 1.31 0.03

6 Juazeiro 1.04 0.06 1.09 0.02

7 Ilheus 0.68 0.04 1.28 0.02
8 Lauro de Freitas 0.88 0.02 1.18 0.01

9 Jequie 0.88 0.06 1.49 0.03

10 Teixeira de Freitas 0.54 0.01 1.18 0.02
11 Alagoinhas 0.59 0.05 1.26 0.03

12 Barreiras 0.74 0.03 1.09 0.02

13 Porto Seguro 0.79 0.04 1.02 0.03

14 Simões Filho 0.63 0.02 1.45 0.02
15 Paulo Afonso 0.65 0.03 1.11 0.01

16 Eun�apolis 0.58 0.01 1.16 0.01

17 Santo Antônio de Jesus 0.58 0.03 1.22 0.02

18 Valença 0.68 0.02 1.05 0.01
19 Candeias 0.65 0.02 1.08 0.01

20 Guanambi 0.76 0.01 1.14 0.01

21 Jacobina 0.57 0.04 1.27 0.02

22 Serrinha 0.67 0.02 1.09 0.01
23 Senhor do Bon¯m 0.71 0.05 1.11 0.02

24 Dias d'Avila 0.54 0.01 1.13 0.01

25 Itapetinga 0.62 0.02 1.32 0.02
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temperature index during certain times of the year or the increase in retail sales

during the Christmas season. Normally, it is not easy to analyze a time series when

the seasonality component is embedded. Indeed, it tends to \disturb" other statis-

tical components embedded in the time series, such as tendency.31 Hence, some

statistic °uctuation properties of dengue incidences in the city of Feira de Santana

are veri¯ed to assess its forecasted behaviors.

Table 2 shows the seasonal °uctuationswheremost of total of incidences of cases are

concentrated during the fall and summer months, whereas the winter and spring

months have less accumulated quantities. Therefore, the behavior con¯rms that the

infection pattern of dengue fever in Brazil follows the trends described in Refs. 1 and 2.

(a) (b)

(c) (d)

Fig. 1. Scaling exponent � for periods of less than one month (gray squares) and exponents for the periods

from one month to one year (black circles) (a); Scaling exponents growth for periods from one month to one

year (b); Scaling exponent for periods less than one month (�Month) as function of exponents for the periods

from one month to one year (�Year) (c); And the distribution of the scale exponent (�). The dark gray
columns are the counts for one month behavior. The light gray columns are the counts for the periods from

one month to one year (d).
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Additionally, strong evidence of cyclical movements is presented in the data

incidences that con¯rm the seasonal component of the virus. In 2000, 2001 and 2002,

an abrupt growth from 2% to 38% was observed (see the Percentage column, in

Table 2). In 2006, 2007, 2008 and 2009, the periods of growth were not abrupt as in

the ¯rst period.

In 2001, there was 6% growth in virus incidence that increased to 38% in the

following year; in 2003, the incidence dropped to 18%, from 766 to 4867 and down to

2241 cases, respectively. The sudden decay has similarities with some physical,

economic and biological complex systems that were studied by self-organized criti-

cality (SOC), which is concerned with the patterns of collective behavior for complex

Table 2. Cumulative season distribution of dengue fever cases in city of

Feira de Santana between the years 2000 and 2009.

Year Summer Fall Winter Spring Total Percentage

2000 5 134 91 15 245 2

2001 74 350 177 165 766 6

2002 1522 2932 209 204 4867 38
2003 680 1075 347 139 2241 18

2004 66 52 55 33 206 2

2005 32 118 167 110 427 3
2006 80 157 122 74 433 3

2007 222 327 188 108 845 7

2008 45 622 417 66 1150 9

2009 251 1303 0 0 1554 12

Total 2977 7070 1773 914 12734 100
Average 298 707 177 91 1273

Fig. 2. The daily incidence of dengue fever cases in the state of Bahia time series from 2000 to 2010. The

gray curve for these 30 days is � ¼ 0:63� 0:05. The black curve for one year is � ¼ 1:45� 0:04.
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systems.30 The critical and cyclical phenomena found in the aggregated data may be

associated with the subdi®usive coe±cients (1 < � < 1:5),29 as shown in Table 1.

Furthermore, the highest dengue incidences were caused by the new serotype

introduced in the state in the year of 2002.3 When water accumulated longer in the

fall season, it contributed to an increase in the spread of dengue eggs and A. aegypti.

The accumulation is assumed to be a result of the slowdown of the heavy summer

rains. Moreover, there was also a certain amount of control between 2004 and 2006

because of less records available when compared to the average value of the period.

4. Discussions and Conclusions

In summary, there are two distinct behaviors in the time series, as presented in Fig. 2.

For one month, the value of the � exponent obtained by the DFA method varies

between 0.50 and 1.00, indicating that the self-a±nity properties and the original

time series have persistent long-range correlations, i.e. large values (small) that are

likely followed by large amounts (small). For an annual period, the � exponent varies

between 1.00 and 1.50, which characterizes as a nonstationary time series, similar to

the behavior of the nonstationary random walks in a subdi®usive process, i.e. the

behavior tends to be seasonal, without presenting similar epidemics from year to

year.

The self-a±ne incidence analysis of dengue (i.e. the data reported for infected

people) from the 25 municipalities is useful as a forecasting tool by extrapolating the

long-range correlation that is observed from the behavior of the scaling exponent (�).

It allows authorities to take actions to prevent future illness. These actions can

promote the minimization of dengue fever cases and predict the hospital demand in

these communities. The behavior of dengue fever has a higher predictability in a

relatively short time (approximately one month), and the occurrence of infection (the

daily incidence) has a long range persistent behavior. For periods of longer than one

month, the method only provides the tendency of certain seasonality. However, it is

not possible to predict a future epidemic only using DFA with the current infor-

mation regarding infected people.
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